x1 წერტილში - \(a_{2}=ae^{-\gamma x_{2}}\)
მაშინ \(\mu =\frac{a_{1}-a_{2}}{a_{1}}=1-exp(\gamma x_{1}-\gamma x_{2})\)
\(exp(\gamma x_{1}-\gamma x_{2})=1-\mu\)
\(x_{1}-x_{2}=\frac{1}{\gamma }ln(1-\mu )\)
ფაზათა შორის სხვაობა იქნება
\(\Delta \varphi =kx_{1}-kx_{2}=k(x_{1}-kx_{2})=\frac{k}{\gamma }ln(1-\mu )\)
\(\Delta \varphi =\frac{k}{\gamma }ln(1-\mu )\)
\(\varphi _{1}=\omega t-\vec{k}\vec{r}_{1}+\varphi _{0}\)
\(\varphi _{2}=\omega t-\vec{k}\vec{r}_{2}+\varphi _{0}\)
ფაზათა შორის სხვაობა იქნება
\(\Delta \varphi =\varphi _{2}-\varphi _{1}=\vec{k}\left (\vec{r}_{2} -\vec{r}_{1} \right )\)
რადგან \)\Delta \varphi =\frac{\omega }{v}\left [ \left ( x_{2}-x_{1} \right )\cos \alpha + \left ( y_{2}-y_{1} \right )\cos \beta + \left ( z_{2}-z_{1} \right )\cos \gamma \right ]$
ამოცანა 8.1
ω სიხშირის ბრტყელი ჰარმონიული ტალღა ვრცელდება v სიჩქარით მიმართულებით, რომელიც x, y, z ღერძებთან ადგენს შესაბამისად α, β, γ კუთხეებს. იპოვნეთ გარემოს x1, y1, z1 და x2, y2, z2 კოორდინატების მქონე წერტილებს შორის ფაზათა სხვაობა.
ამოცანა 8.2
ერთგვაროვან გარემოში ვრცელდება ბრტყელი დრეკადი ტალღა, რომლის გაანტოლება არის ξ = ae-γx(ωt - kx), სადაც a, γ, ω და k — მუდმივებია. იპოვნეთ იმ წერტილებს შორის ფაზათა სხვაობა, რომლებშიც გარემოს ნაწილაკების წანაცვლება ერთმათისგან განსხვავდება η სიდიდით.
ამოცანა 8.3
იზოტროპული წერტილოვანი წყარო, რომლის ბგერითი სიმძლავრე არის P, მოთავსებულია ღრუ R რადიუსისა და h სიმაღლის მქონე ცილინდრის ცენტრში. ვიგულისხმოთ, რომ ცილინდრის კედლები სრულად შთანთქავს ბგერას და იპოვნეთ ენერგიის საშუალო ნაკადი, რომელიც ეცემა ცილინდრის გვერდითა კედლებს.
ამოცანა 7.1
იდეალურად გლუვ ზედაპირზე ძევს m მასის ტვირთი, ორი მხრიდან გაჭიმული 1 და 2 ზამბარით, რომელთა დრეკადობის კოეფიციენტებია k1 და k2. თუ ტვირთს გამოვიყვანთ წონასწორობიდან (გვერდზე გადახრით) იგი დაიწყებს რხევას Т პერიოდით. შეიცვლება თუ არა რხევის პერიოდი, თუ იმავე ზამბარებს დავამაგრებთ არა А1 და А2 წერტილებში არამედ В1 და В2 წერტილებში?
ამოცანა 7.2
ქანქარა შედგება ძაფზე ჩამოკიდებული წყლით სავსე ჭურჭლისგან. როგორ შეიცვლება ქანქარის პერიოდი, თუ ჭურჭლის ფსკერი გახვრეტილია და იქიდან წყალი გამოდის? 1) როცა თვით ჭურჭლის მასათა ცენტრი არის ფსკერზე და 2) როცა მასათა ცენტრი არის ფსკერს ზემოთ.
ამოცანა 7.3
მატერიალური წერტილი მონაწილეობს ერთდროულად ორ ჰარმონიულ რხევით პროცესში, რომლებიც ერთი მიმართულებით მიმდინარეობს. მათი სიხშირეები ტოლია, ამპლიტუდებია x01= 5 სმ და x02= 10 სმ და ფაზათა წანაცვლებაა . განსაზღვრეთ ჯამური რხევითი პროცესის ამპლიტუდა და საწყისი ფაზა.
ამოცანა 7.4
განსაზღვრეთ l = 20 სმ სიგრძის უჭიმვად, უწონო ძაფზე ჩამოკიდებული ბურთულას მცირე რხევების პერიოდი, თუ სისტემა მოთავსებულია სითხეში, რომლის სიმკვრივე η=3-ჯერ ნაკლებია ბურთულისაზე. სითხის წინაღობა უგულებელვყოთ. (გაიხსენეტ, რომ არქიმედეს ამომგდები ძალა \(\vec{F}_{A}=-\rho _{l}V\vec{g}\), სადაც . \(\rho _{l}\) სითხის სიმკვრივეა).
ამოცანა 7.5
უწონო ზამბარაზე ჩამოკიდებულია ტვირთი და ზამბარა გაჭიმულია Δх = 9,8 სმ სიგრძით. რა პერიოდით დაიწყებს რხევას ტვირთი, თუ მას ოდნავ ვუბიძგებთ ვერტიკალური მიმართულებით? მილევის ლოგარითმული დეკრემენტი არის λ = 3,1.
ძალიან მჭირდება თქვენი დახმარება ამ ამოცანაში შვეულად ასროლილი ჭურვი მაქსიმალურ სიმაღლეზე აფეთქდა და სამი ნამსხვრევი წარმოიქმნა. ურთიერთმართობული ორი ნამსხვრევიდან ერთის მასაა 9 კგ და სიჩქარე 60 მ/........
ცილინდრში თავისუფლად მოძრაობს 100სმ2 განივკვეთისა და 50 კგ მასის დგუში. დგუშის ქვეშ ჰაერია. რამდენჯერ შემცირდება ჰაერის მოცულობა, თუ დგუშზე მოათავსებენ 100 კგ მასის ტვირთს? ჰაერის ტემპერატურა მუდ........
ციგაზე მჯდომ ბავშვს მიასრიალებენ ჰორიზონტისადმი 450-იანი კუთხით გაჭიმული თოკის საშუალებით 20ნ ძალით. რას უდრის ციგის 100მ მანძილზე გასასრიალებელად შესრულებული მუშაობა?
განზაღვრეთ ჰორიზონტალურ გზაზე ელმავლის მიერ შესრულებული მუშაობა,თუ მან 5კმ ზე თანაბარი მოძრაობით გადაიყვანა შემადგენლობა,რომელზედაც მოქმედი წინააღმდეგობის ძალის მოდული 9.104 -ნ ია. გთხოვთ დამე........