\(T=T_{0}+\alpha V^{2}=T_{0}+\alpha \frac{R^{2}T^{2}}{p^{2}}\) (რადგან, \(V=\frac{RT}{p}\) იდეალური აირის ერთი მოლისთვის)
ამიტომ \(p=\sqrt{\alpha }RT\left ( T-T_{0} \right )^{-1/2}\) (1)
იმისათვის რათა წნევა იყოს მინიმალური, უნდა სრულდებოდეს პირობა \(\frac{\mathrm{d} }{\mathrm{d} T}p=0\), ამიტომ გვექნება
\(T=2T_{0}\) (2)
(1) და (2)-დან მივიღებთ,
\(p_{min}=\sqrt{\alpha }R2T_{0}\left ( 2T_{0}-T_{0} \right )^{-1/2}=2R\sqrt{\alpha T_{0}}\)
(ა) \(p=p_{0}-\alpha V^{2}=p_{0}-\alpha \left ( \frac{RT}{p} \right )^{2}\) (რადგან, \(V=\frac{RT}{p}\) ერთი მოლი აირისთვის)
ამიტომ, \(T=\frac{1}{R\sqrt{\alpha }}p\sqrt{p_{0}-p}=\frac{1}{R\sqrt{\alpha }}\sqrt{p_{0}p^{2}-p^{3}}\) (1)
მაქსიმალური ტემპერატურისას მისი წარმოებული უნდა იყოს ნული ანუ
\(\frac{\mathrm{d} }{\mathrm{d} p}\left (p_{0}p^{2}-p^{3} \right )=0\), რაც გვაძლევს \(p=\frac{2}{3}p_{0}\) (2)
ამიტომ, \(T_{max}=\frac{1}{R\sqrt{\alpha }}\frac{2}{3}p_{0}\sqrt{p_{0}-\frac{2}{3}p_{0}}=\frac{2}{3}\left ( \frac{p_{0}}{R} \right )\sqrt{\frac{p_{0}}{3\alpha }}\)
(ბ) \(p=p_{0}e^{-\beta V}=p_{0}e^{-\beta kT/p}\)
აქედან \(\frac{\beta RT}{p}=ln\frac{p_{0}}{p}\) და \(T=\frac{p}{\beta R}ln\frac{p_{0}}{p}\) (1)
\(\frac{\mathrm{d} }{\mathrm{d} p}T=0\) პირობიდან მივიღებთ
\(p=\frac{p_{0}}{e}\), (1)-ში ამის ჩასმიტ მივიღებთ
\(T_{max}=\frac{p_{0}}{e\beta R}\)
(14,7) ამოცანიდან ვიცით, რომ
\(p=\frac{m}{M}\frac{RT}{V}\) კლაპეირონის განტოლებიდან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=\frac{RT}{MV}\frac{\mathrm{d} m}{\mathrm{d} t}\) (1)
ყოველი ამოქაჩვისას გამოიდევნება მიტაცებული აირის მოცულობა
\(v=\frac{V}{m_{N}}\left [ m_{N-1}-m_{N} \right ]\)
უწყვეტი გამოდევნის შემთხვევაში, თუ \(m_{N-1}\) შეესაბამება აირის მასას ჭურჭელში დროის t მომენტში მაშინ \(m_{N}\) არის მასა ჭუჭელში \(t+\Delta t\) დროის მომენტში სადაც \(\Delta t\) არის v მოცულობის გამოდევნისთვის საჭირო დროის შუალედი.. მაშინ ამოტუმბვის სიჩქარე არის \(\frac{v}{\Delta t}\) ანუ
\(C=\frac{v}{\Delta t}=-\frac{V}{m\left ( t+\Delta t \right )}\frac{m\left ( t+\Delta t \right )-m\left ( t \right )}{\Delta t}\)
თუ გადავალთ ზღვარზე, როცა \(\Delta t\rightarrow \infty\), მივიღებთ
\(C=-\frac{V}{m}\frac{\mathrm{d} m}{\mathrm{d} t}\) (2)
(1) და (2)-დან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=-\frac{RT}{MV}m\frac{C}{V}=-\frac{C}{V}p\) ანუ \(\frac{\mathrm{d} p}{p}=-\frac{C}{V}\mathrm{d} t\)
გაინტეგრებით
\(\int_{p}^{p_{0}}\frac{\mathrm{d} p}{p}=-\frac{C}{V}\int_{t}^{O}\mathrm{d} t\) ანუ \(ln\frac{p}{p_{0}}=-\frac{C}{V}t\)
ამიტომ \(p=p_{0}e^{-\frac{Ct}{V}}\)
დახშულ ჭურჭელში იმყოფება აზოტი (N2), რომლის აბსოლუტური ტემპერატურაა T, ხოლო წნევაა p. 2,4T აბსოლუტურ ტემპერატურაზე აზოტის მოლეკულების a ნაწილი დისოცირდა ატომებად და წნევა ჭურჭელში გახდა 4p. განსაზღვრე........
ელექტრონი 2*107 მ/წმ სიჩქარით შეიჭრა 200ნ/კ დაძაბულობის ერთგვაროვან ელექტრულ ველში ძალწირების მიმართულებით. რა დროის შემდეგ გაჩერდება იგი? წინასწარ გიხდით მადლობას.
რა იგულისხმება ხახუნის ძალის დამოკიდებულებაში ფარდობით სიჩქარეზე, ნებისმიერი სახის ხახუნის ძალაა დამოკიდებული მასზე თუ მხოლოდ რომელიმე კონკრეტული? ხახუნის ძალის შესახებ საიტზე განთავსებულ ინფორმაციას ........
სხეული მოძრაობდა წრფივად და მუდმივი სიჩქარით.მასზე 2 წამის განმავლობაში იმოქმედა მოძრაობის მიმართულების მართობულმა 3 ნ-ის ტოლმა ძალამ.ამის შემდეგ სხეულის იმპულსი გახდა 10კგ.მ/წმ განსაზღვრეთ მისი საწყი........