\(T=T_{0}+\alpha V^{2}=T_{0}+\alpha \frac{R^{2}T^{2}}{p^{2}}\) (რადგან, \(V=\frac{RT}{p}\) იდეალური აირის ერთი მოლისთვის)
ამიტომ \(p=\sqrt{\alpha }RT\left ( T-T_{0} \right )^{-1/2}\) (1)
იმისათვის რათა წნევა იყოს მინიმალური, უნდა სრულდებოდეს პირობა \(\frac{\mathrm{d} }{\mathrm{d} T}p=0\), ამიტომ გვექნება
\(T=2T_{0}\) (2)
(1) და (2)-დან მივიღებთ,
\(p_{min}=\sqrt{\alpha }R2T_{0}\left ( 2T_{0}-T_{0} \right )^{-1/2}=2R\sqrt{\alpha T_{0}}\)
(ა) \(p=p_{0}-\alpha V^{2}=p_{0}-\alpha \left ( \frac{RT}{p} \right )^{2}\) (რადგან, \(V=\frac{RT}{p}\) ერთი მოლი აირისთვის)
ამიტომ, \(T=\frac{1}{R\sqrt{\alpha }}p\sqrt{p_{0}-p}=\frac{1}{R\sqrt{\alpha }}\sqrt{p_{0}p^{2}-p^{3}}\) (1)
მაქსიმალური ტემპერატურისას მისი წარმოებული უნდა იყოს ნული ანუ
\(\frac{\mathrm{d} }{\mathrm{d} p}\left (p_{0}p^{2}-p^{3} \right )=0\), რაც გვაძლევს \(p=\frac{2}{3}p_{0}\) (2)
ამიტომ, \(T_{max}=\frac{1}{R\sqrt{\alpha }}\frac{2}{3}p_{0}\sqrt{p_{0}-\frac{2}{3}p_{0}}=\frac{2}{3}\left ( \frac{p_{0}}{R} \right )\sqrt{\frac{p_{0}}{3\alpha }}\)
(ბ) \(p=p_{0}e^{-\beta V}=p_{0}e^{-\beta kT/p}\)
აქედან \(\frac{\beta RT}{p}=ln\frac{p_{0}}{p}\) და \(T=\frac{p}{\beta R}ln\frac{p_{0}}{p}\) (1)
\(\frac{\mathrm{d} }{\mathrm{d} p}T=0\) პირობიდან მივიღებთ
\(p=\frac{p_{0}}{e}\), (1)-ში ამის ჩასმიტ მივიღებთ
\(T_{max}=\frac{p_{0}}{e\beta R}\)
(14,7) ამოცანიდან ვიცით, რომ
\(p=\frac{m}{M}\frac{RT}{V}\) კლაპეირონის განტოლებიდან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=\frac{RT}{MV}\frac{\mathrm{d} m}{\mathrm{d} t}\) (1)
ყოველი ამოქაჩვისას გამოიდევნება მიტაცებული აირის მოცულობა
\(v=\frac{V}{m_{N}}\left [ m_{N-1}-m_{N} \right ]\)
უწყვეტი გამოდევნის შემთხვევაში, თუ \(m_{N-1}\) შეესაბამება აირის მასას ჭურჭელში დროის t მომენტში მაშინ \(m_{N}\) არის მასა ჭუჭელში \(t+\Delta t\) დროის მომენტში სადაც \(\Delta t\) არის v მოცულობის გამოდევნისთვის საჭირო დროის შუალედი.. მაშინ ამოტუმბვის სიჩქარე არის \(\frac{v}{\Delta t}\) ანუ
\(C=\frac{v}{\Delta t}=-\frac{V}{m\left ( t+\Delta t \right )}\frac{m\left ( t+\Delta t \right )-m\left ( t \right )}{\Delta t}\)
თუ გადავალთ ზღვარზე, როცა \(\Delta t\rightarrow \infty\), მივიღებთ
\(C=-\frac{V}{m}\frac{\mathrm{d} m}{\mathrm{d} t}\) (2)
(1) და (2)-დან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=-\frac{RT}{MV}m\frac{C}{V}=-\frac{C}{V}p\) ანუ \(\frac{\mathrm{d} p}{p}=-\frac{C}{V}\mathrm{d} t\)
გაინტეგრებით
\(\int_{p}^{p_{0}}\frac{\mathrm{d} p}{p}=-\frac{C}{V}\int_{t}^{O}\mathrm{d} t\) ანუ \(ln\frac{p}{p_{0}}=-\frac{C}{V}t\)
ამიტომ \(p=p_{0}e^{-\frac{Ct}{V}}\)
რა ao აჩქარებით უნდა ვამოძრაოთ ალფა დახრილობის სიბრტყე ჰორიზონტალური მიმართულებით, რათა მასზე მოთავსებული ტვირთი სიბრტყის მიმართ უძრავი დარჩეს? ხახუნი ტვირთსა და დახრ სიბრტყეს ........
300 გ მასის ბურთი ნავთში ნახევრად ჩაძირული ტივტივებს. რისი ტოლი იქნება ამ ბურთზე მოქმედი ამომგდები ძალა, თუ ის წყალში ტივტივებს?
:// <3 ლურსმანზე თანაბრად(ორივე მხარეს თოკის ტოლი ნაწილებია გადაკიდებული) ჩამოკიდებულია 20მ. სიგრძის თოკი. მისი ერთი ბოლო მცირედით ჩამოვქაჩეთ და თოკმა დაიწყო მთლიანად ჩამოსრიალება. იპოვე........
1)რა წნევას ახდენს წყალი გრაფინის ფსკერზე თუ დონე 16 სანტიმეტრია? 2)ლითონის ნაჭრის ჰაერში და წყალში აწონვისას ზამბარიანმა სასწორმა აჩვენა 5 ნ. და 3,15 ნ. რა ლითონისაა ეს ნაჭერი?