\(T=T_{0}+\alpha V^{2}=T_{0}+\alpha \frac{R^{2}T^{2}}{p^{2}}\) (რადგან, \(V=\frac{RT}{p}\) იდეალური აირის ერთი მოლისთვის)
ამიტომ \(p=\sqrt{\alpha }RT\left ( T-T_{0} \right )^{-1/2}\) (1)
იმისათვის რათა წნევა იყოს მინიმალური, უნდა სრულდებოდეს პირობა \(\frac{\mathrm{d} }{\mathrm{d} T}p=0\), ამიტომ გვექნება
\(T=2T_{0}\) (2)
(1) და (2)-დან მივიღებთ,
\(p_{min}=\sqrt{\alpha }R2T_{0}\left ( 2T_{0}-T_{0} \right )^{-1/2}=2R\sqrt{\alpha T_{0}}\)
(ა) \(p=p_{0}-\alpha V^{2}=p_{0}-\alpha \left ( \frac{RT}{p} \right )^{2}\) (რადგან, \(V=\frac{RT}{p}\) ერთი მოლი აირისთვის)
ამიტომ, \(T=\frac{1}{R\sqrt{\alpha }}p\sqrt{p_{0}-p}=\frac{1}{R\sqrt{\alpha }}\sqrt{p_{0}p^{2}-p^{3}}\) (1)
მაქსიმალური ტემპერატურისას მისი წარმოებული უნდა იყოს ნული ანუ
\(\frac{\mathrm{d} }{\mathrm{d} p}\left (p_{0}p^{2}-p^{3} \right )=0\), რაც გვაძლევს \(p=\frac{2}{3}p_{0}\) (2)
ამიტომ, \(T_{max}=\frac{1}{R\sqrt{\alpha }}\frac{2}{3}p_{0}\sqrt{p_{0}-\frac{2}{3}p_{0}}=\frac{2}{3}\left ( \frac{p_{0}}{R} \right )\sqrt{\frac{p_{0}}{3\alpha }}\)
(ბ) \(p=p_{0}e^{-\beta V}=p_{0}e^{-\beta kT/p}\)
აქედან \(\frac{\beta RT}{p}=ln\frac{p_{0}}{p}\) და \(T=\frac{p}{\beta R}ln\frac{p_{0}}{p}\) (1)
\(\frac{\mathrm{d} }{\mathrm{d} p}T=0\) პირობიდან მივიღებთ
\(p=\frac{p_{0}}{e}\), (1)-ში ამის ჩასმიტ მივიღებთ
\(T_{max}=\frac{p_{0}}{e\beta R}\)
(14,7) ამოცანიდან ვიცით, რომ
\(p=\frac{m}{M}\frac{RT}{V}\) კლაპეირონის განტოლებიდან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=\frac{RT}{MV}\frac{\mathrm{d} m}{\mathrm{d} t}\) (1)
ყოველი ამოქაჩვისას გამოიდევნება მიტაცებული აირის მოცულობა
\(v=\frac{V}{m_{N}}\left [ m_{N-1}-m_{N} \right ]\)
უწყვეტი გამოდევნის შემთხვევაში, თუ \(m_{N-1}\) შეესაბამება აირის მასას ჭურჭელში დროის t მომენტში მაშინ \(m_{N}\) არის მასა ჭუჭელში \(t+\Delta t\) დროის მომენტში სადაც \(\Delta t\) არის v მოცულობის გამოდევნისთვის საჭირო დროის შუალედი.. მაშინ ამოტუმბვის სიჩქარე არის \(\frac{v}{\Delta t}\) ანუ
\(C=\frac{v}{\Delta t}=-\frac{V}{m\left ( t+\Delta t \right )}\frac{m\left ( t+\Delta t \right )-m\left ( t \right )}{\Delta t}\)
თუ გადავალთ ზღვარზე, როცა \(\Delta t\rightarrow \infty\), მივიღებთ
\(C=-\frac{V}{m}\frac{\mathrm{d} m}{\mathrm{d} t}\) (2)
(1) და (2)-დან
\(\frac{\mathrm{d} p}{\mathrm{d} t}=-\frac{RT}{MV}m\frac{C}{V}=-\frac{C}{V}p\) ანუ \(\frac{\mathrm{d} p}{p}=-\frac{C}{V}\mathrm{d} t\)
გაინტეგრებით
\(\int_{p}^{p_{0}}\frac{\mathrm{d} p}{p}=-\frac{C}{V}\int_{t}^{O}\mathrm{d} t\) ანუ \(ln\frac{p}{p_{0}}=-\frac{C}{V}t\)
ამიტომ \(p=p_{0}e^{-\frac{Ct}{V}}\)
ბატონო ოლეგ კიდევ მჭირდება თქვენი დახმარება...თითქოს მარტივი ამოცანააა მაგრამ პასუხი არ ემთხვევა, იქნებ გამირჩიოთ ან რჩევა მომცეთ...რა საჩქარით აააგდეს სხეული ვერტიკალურად ზევით დედამიწის ზედაპირიდან1........
რა სიმაღლიდან ვარდება სხეული თუ ჩამოვარდნის მომენტში მას აქვს 8მ/წმ სიჩქარე
რა მანძილზე და რა დროის შემდეგ დაეცემა ეიფელი კოშკის წვეროდან ჰორიზონტალური მიმართულებით 10მ/წმ სიჩქარით ნასროლი მონეტა?
სპილენძისა და ალუმინის მავთულების მასა და განივკვეთის ფართობი ერთნაირია.რომლის წინაღობაა მეტი და რამდენჯერ?
